How GDA helps to turn raw data into results Or at least lets you decide if you are collecting reasonable data

Tobias Richter for the Diamond data acquisition & scientific software teams

NOBUGS 2010 Gatlinburg

Introduction

@ Diamond

- is the data acquisition system used on (almost) all beamlines
- has integrated visualisation and analysis features
- caters for a wide range of disciplines
- written in Java
- has a Jython scripting interface
- is a client/server based system
- GUI client written using the Eclipse RCP framework
- is open source software, see www.opengda.org

- give the user control over the data he is collecting by displaying in a meaningful way
- do not waste beamtime on bad samples
- user is more likely analyse the data in more detail and publish
- can be used for decision making in automated experiments
- should not interfere with data collection

- give the user control over the data he is collecting by displaying in a meaningful way
- do not waste beamtime on bad samples
- user is more likely analyse the data in more detail and publish
- can be used for decision making in automated experiments
- should not interfere with data collection
- collection and processing at the same time?

Exafs Analysis

- GUI based
- no processing data is written to the file
- \blacksquare scans with scalar data ($h\nu$ vs. I_0 and I_t) low data rate
- background subtraction, first derivative and fourier transformation are performed

Exafs setup

Exafs data

Exafs fourier

Small Angle Scattering

- processing deployed on I22
 which serves physicists, chemists and biologists
- experiments collect from 1MB to 40GB and run in 200ms to 4h
- processing runs on server
- processing parameters and results are written to file along with raw data

Automatic Reduction

- normalise
- detector response
- background subtraction
- average
- invariant
- sector integration

GDA standard tools to visualise and investigate data are used to define reduction parameters (i.e. sector integration)

Data Processing Features

- delivers I vs. q
- reduction results saved to NeXus with raw data
- framework allows any data operation
- extensible (also from scripting) and configurable on the fly
- elements can be combined in a chain or tree
- all data (reduced and raw) for (at least) one frameset needs to fit into memory

Implementation Details

- detectors present themselves as a detector system with a configureable set of virtual detectors
- each detector (physical or virtual) contributes a partial NeXus tree to the savable data
- each detector receives a handle to the tree structure to read and add data
- when the physical detectors are read, the scan continues
- processing detectors can keep state, if they want to operate across scan point boundaries

Threading

The number of processing threads can be configured at runtime.

Problem

Users need to give up the first few minutes of their beamtime for measuring background, calibrants, etc.

Ongoing Work

- configurable visualisation in domain specific plots (Kratky, Guinier, Porod, Zimm, etc)
- re-evaluation for offline analysis
- simple analysis: peak fitting / finding / following

Outlook

- tuning for performance responsiveness for more exotic cases
- more advanced analysis: domain specific configurable workflow run outside of GDA (using EDNA), results displayed in GDA
- descision making
- deployment on other beamlines (at Diamond and elsewhere)

